Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Epilepsia ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491957

RESUMO

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.

2.
Brain Commun ; 6(1): fcae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317856

RESUMO

The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.

3.
Brain Commun ; 6(1): fcad355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204971

RESUMO

MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.

4.
Front Mol Neurosci ; 16: 1230942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808470

RESUMO

The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy.

5.
Stem Cell Reports ; 18(9): 1870-1883, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595581

RESUMO

Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs). Here we report a rapid and simple protocol to differentiate MNs in monolayer culture using small molecules, which led to nearly pure neural stem cells in 6 days, robust OLIG2+ pMNs (73%-91%) in 12 days, enriched CHAT+ cervical spinal MNs (sMNs) (88%-97%) in 18 days, and functionally mature sMNs in 28 days. This simple and reproducible protocol permitted the identification of hyperexcitability phenotypes in our sALS iPSC-derived sMNs, and its application in neurodegenerative diseases should facilitate in vitro disease modeling, drug screening, and the development of cell therapy.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Osteocondrodisplasias , Humanos , Neurônios Motores , Autofagia , Diferenciação Celular
7.
Epilepsia ; 64(10): 2827-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543852

RESUMO

OBJECTIVE: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.


Assuntos
Proteínas CLOCK , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Melatonina , Proteínas de Ligação a RNA , Estado Epiléptico , Animais , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Hipocampo , Melatonina/sangue , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Convulsões , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Fatores de Transcrição/metabolismo , Proteínas CLOCK/genética
8.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
9.
Purinergic Signal ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453017

RESUMO

Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 ß-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).

10.
Seizure ; 106: 68-75, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774776

RESUMO

The release of the 2021 Intergovernmental Panel on Climate Change (IPCC) report makes clear that human activities have resulted in significant alterations in global climate. There is no doubt that climate change is upon us; chronic global warming has been punctuated by more frequent extreme weather events. Humanity will have to mitigate climate change and adapt to these changing conditions or face dire consequences. One under-appreciated aspect of this global crisis is its impact on healthcare, particularly people with epilepsy and temperature-sensitive seizures. As members of the inaugural International League Against Epilepsy (ILAE) Climate Change Commission, we recount the personal motivations that have led each team member to decide to take action, in the hope that our journeys as ordinary clinicians and scientists will help persuade others that they too can act to foster change within their spheres of influence.


Assuntos
Mudança Climática , Epilepsia , Humanos , Epilepsia/terapia , Convulsões
11.
Br J Pharmacol ; 180(13): 1710-1729, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637008

RESUMO

BACKGROUND AND PURPOSE: Neonatal seizures represent a clinical emergency. However, current anti-seizure medications fail to resolve seizures in ~50% of infants. The P2X7 receptor (P2X7R) is an important driver of inflammation, and evidence suggests that P2X7R contributes to seizures and epilepsy in adults. However, no genetic proof has yet been provided to determine what contribution P2X7R makes to neonatal seizures, its effects on inflammatory signalling during neonatal seizures, and the therapeutic potential of P2X7R-based treatments on long-lasting brain excitability. EXPERIMENTAL APPROACH: Neonatal seizures were induced by global hypoxia in 7-day-old mouse pups (P7). The role of P2X7Rs during seizures was analysed in P2X7R-overexpressing and knockout mice. Treatment of wild-type mice after hypoxia with the P2X7R antagonist JNJ-47965567 was used to determine the effects of the P2X7R on long-lasting brain hyperexcitability. Cell type-specific P2X7R expression was analysed in P2X7R-EGFP reporter mice. RNA sequencing was used to monitor P2X7R-dependent hippocampal downstream signalling. KEY RESULTS: P2X7R deletion reduced seizure severity, whereas P2X7R overexpression exacerbated seizure severity and reduced responsiveness to anti-seizure medication. P2X7R deficiency led to an anti-inflammatory phenotype in microglia, and treatment of mice with a P2X7R antagonist reduced long-lasting brain hyperexcitability. RNA sequencing identified several pathways altered in P2X7R knockout mice after neonatal hypoxia, including a down-regulation of genes implicated in inflammation and glutamatergic signalling. CONCLUSION AND IMPLICATIONS: Treatments based on targeting the P2X7R may represent a novel therapeutic strategy for neonatal seizures with P2X7Rs contributing to the generation of neonatal seizures, driving inflammatory processes and long-term hyperexcitability states.


Assuntos
Receptores Purinérgicos P2X7 , Convulsões , Animais , Camundongos , Animais Recém-Nascidos , Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipóxia/complicações , Inflamação/tratamento farmacológico , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Convulsões/metabolismo
12.
Methods Mol Biol ; 2595: 93-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441456

RESUMO

MicroRNAs are key posttranscriptional regulators of protein levels in cells. The brain is particularly enriched in microRNAs, and important roles have been demonstrated for these noncoding RNAs in various neurological disorders. To this end, visualization of microRNAs in specific cell types and subcellular compartments within tissue sections provides researchers with essential insights that support understanding of the cell and molecular mechanisms of microRNAs in brain diseases. In this chapter we describe an in situ hybridization protocol for the detection of microRNAs in mouse brain sections, which provides cellular resolution of the expression of microRNAs in the brain.


Assuntos
Encefalopatias , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/genética , Hibridização In Situ , Encéfalo , Pesquisadores
13.
Epilepsia ; 64(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507708

RESUMO

OBJECTIVE: The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS: Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS: P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE: Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Humanos , Masculino , Animais , Epilepsia do Lobo Temporal/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/metabolismo , Convulsões/tratamento farmacológico
14.
Epilepsy Res ; 189: 107068, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549242

RESUMO

Collaboration is essential to the conduct of basic, applied and clinical research and its translation into the technologies and treatments urgently needed to improve the lives of people living with brain diseases and the health professionals who care for them. EPICLUSTER was formed in 2019 by the European Brain Research Area (EBRA) to support the coordination of epilepsy research in Europe. A key objective was to provide a platform to discuss shared research priorities by bringing together scientists and clinicians with multiple stakeholders including patient organisations and industry and the networks and infrastructures that provide healthcare and support research. Additional objectives were to facilitate access and sharing of data and biosamples, working together to ensure epilepsy is a priority for research funding, and embedding a culture of public and patient involvement (PPI) among epilepsy researchers. In this meeting report, we summarise the shared research priorities discussed by the leadership of EPICLUSTER at the recent final meeting. We also briefly review the discussion on patient and industry priorities, guidance on starting PPI for epilepsy researchers, and the sustainability of funding and infrastructures needed to ensure a comprehensive stakeholder-embedded community for epilepsy research.


Assuntos
Encefalopatias , Epilepsia , Médicos , Humanos , Epilepsia/terapia , Europa (Continente) , Encéfalo
15.
Front Pharmacol ; 14: 1308478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259288

RESUMO

There remains a need for new drug targets for treatment-resistant temporal lobe epilepsy. The ATP-gated P2X7 receptor coordinates neuroinflammatory responses to tissue injury. Previous studies in mice reported that the P2X7 receptor antagonist JNJ-47965567 suppressed spontaneous seizures in the intraamygdala kainic acid model of epilepsy and reduced attendant gliosis in the hippocampus. The drug-resistance profile of this model is not fully characterised, however, and newer P2X7 receptor antagonists with superior pharmacokinetic profiles have recently entered clinical trials. Using telemetry-based continuous EEG recordings in mice, we demonstrate that spontaneous recurrent seizures in the intraamygdala kainic acid model are refractory to the common anti-seizure medicine levetiracetam. In contrast, once-daily dosing of JNJ-54175446 (30 mg/kg, intraperitoneal) resulted in a significant reduction in spontaneous recurrent seizures which lasted several days after the end of drug administration. Using a combination of immunohistochemistry and ex vivo radiotracer assay, we find that JNJ-54175446-treated mice at the end of recordings display a reduction in astrogliosis and altered microglia process morphology within the ipsilateral CA3 subfield of the hippocampus, but no difference in P2X7 receptor surface expression. The present study extends the characterisation of the drug-resistance profile of the intraamygdala kainic acid model in mice and provides further evidence that targeting the P2X7 receptor may have therapeutic applications in the treatment of temporal lobe epilepsy.

16.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240080

RESUMO

Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the SCN1A gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS. MicroRNAs are short noncoding RNAs that play a key role in brain structure and function by post-transcriptionally regulating gene expression, including ion channels. Inhibiting miRNA-134 (miR-134) using an antimiR ASO (Ant-134) has been shown to reduce evoked seizures in juvenile and adult mice and reduce epilepsy development in models of focal epilepsy. The present study investigated the levels of miR-134 and whether Ant-134 could protect against hyperthermia-induced seizures, spontaneous seizures and mortality (SUDEP) in F1.Scn1a(+/-)tm1kea mice. At P17, animals were intracerebroventricular injected with 0.1-1 nmol of Ant-134 and subject to a hyperthermia challenge at postnatal day (P)18. A second cohort of P21 F1.Scn1a(+/-)tm1kea mice received Ant-134 and were followed by video and EEG monitoring until P28 to track the incidence of spontaneous seizures and SUDEP. Hippocampal and cortical levels of miR-134 were similar between wild-type (WT) and F1.Scn1a(+/-)tm1kea mice. Moreover, Ant-134 had no effect on hyperthermia-induced seizures, spontaneous seizures and SUDEP incidence were unchanged in Ant-134-treated DS mice. These findings suggest that targeting miR-134 does not have therapeutic applications in DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , MicroRNAs , Morte Súbita Inesperada na Epilepsia , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsia/complicações , Síndromes Epilépticas , Camundongos , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico
17.
Nat Rev Neurol ; 18(9): 530-543, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35859062

RESUMO

An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.


Assuntos
Epigênese Genética , Epilepsia , Metilação de DNA/genética , Epigênese Genética/genética , Epilepsia/genética , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
18.
Epilepsia ; 63(8): e92-e99, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656590

RESUMO

Antisense inhibition of microRNAs is an emerging preclinical approach to pharmacoresistant epilepsy. A leading candidate is an "antimiR" targeting microRNA-134 (ant-134), but testing to date has used rodent models. Here, we develop an antimiR testing platform in human brain tissue sections. Brain specimens were obtained from patients undergoing resective surgery to treat pharmacoresistant epilepsy. Neocortical specimens were submerged in modified artificial cerebrospinal fluid (ACSF) and dissected for clinical neuropathological examination, and unused material was transferred for sectioning. Individual sections were incubated in oxygenated ACSF, containing either ant-134 or a nontargeting control antimiR, for 24 h at room temperature. RNA integrity was assessed using BioAnalyzer processing, and individual miRNA levels were measured using quantitative reverse transcriptase polymerase chain reaction. Specimens transported in ACSF could be used for neuropathological diagnosis and had good RNA integrity. Ant-134 mediated a dose-dependent knockdown of miR-134, with approximately 75% reduction of miR-134 at 1 µmol L-1 and 90% reduction at 3 µmol L-1 . These doses did not have off-target effects on expression of a selection of three other miRNAs. This is the first demonstration of ant-134 effects in live human brain tissues. The findings lend further support to the preclinical development of a therapy that targets miR-134 and offer a flexible platform for the preclinical testing of antimiRs, and other antisense oligonucleotide therapeutics, in human brain.


Assuntos
MicroRNAs , Encéfalo/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Oligonucleotídeos , Oligonucleotídeos Antissenso
19.
Bioelectrochemistry ; 146: 108150, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35550256

RESUMO

The detection of a key biomarker in epilepsy, miR-134, using an environmentally sensitive electrochemiluminescent luminophore, [Ru(DPPZ)2 PIC]2+, is reported, DPPZ is dipyrido[3,2-a:2',3'-c]phenazine) and PIC is (2,2'-bipyridyl)-2(4-carboxy phenyl) imidazo [4,5][1,10] phenanthroline. A thiolated capture strand is first labelled with [Ru(DPPZ)2 PIC]2+ and then adsorbed onto a gold electrode. No significant electrochemiluminescence, ECL, is observed for immobilised Ru-labelled capture strands which is consistent with the light-switch dye being exposed to the aqueous solution. In sharp contrast, binding of the target turns on ECL. The ECL intensity, IECL, depends on the number of adenine "spacer" bases between the end of the capture sequence and the dye. The ECL intensity for the optimised system increases linearly with increasing miR-134 concentration from 100 nM to approximately 20 µM. Single and double base mismatches produce IECL that are only approximately 30% and 8% respectively of that observed for the fully complementary target reflecting differences in their association constants. Significantly, the presence of BSA protein causes IECL to increase by less 5% in either the single or duplex circumstances. Finally, the ability of the sensor to quantify miR-134 in unprocessed plasma samples from healthy volunteers and people with epilepsy is reported.


Assuntos
Técnicas Biossensoriais , Complexos de Coordenação , Epilepsia , MicroRNAs , Biomarcadores , Técnicas Eletroquímicas , Epilepsia/diagnóstico , Humanos , Medições Luminescentes , Fenantrolinas
20.
Mol Ther Nucleic Acids ; 28: 514-529, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35592499

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted UBE3A gene, with current precision therapy approaches focusing on re-expression of UBE3A. Certain phenotypes, however, are difficult to rescue beyond early development. Notably, a cluster of microRNA binding sites was reported in the untranslated Ube3a1 transcript, including for miR-134, suggesting that AS may be associated with microRNA dysregulation. Here, we report levels of miR-134 and key targets are normal in the hippocampus of mice carrying a maternal deletion of Ube3a (Ube3a m-/p+ ). Nevertheless, intracerebroventricular injection of an antimiR oligonucleotide inhibitor of miR-134 (Ant-134) reduced audiogenic seizure severity over multiple trials in 21- and 42-day-old AS mice. Interestingly, Ant-134 also improved distance traveled and center crossings of AS mice in the open-field test. Finally, we show that silencing miR-134 can upregulate targets of miR-134 in neurons differentiated from Angelman patient-derived induced pluripotent stem cells. These findings indicate that silencing miR-134 and possibly other microRNAs could be useful to treat clinically relevant phenotypes with a later developmental window in AS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...